Noise Element | INTRODUCT | ION | |------------------|--| | Achieving t | he Vision | | | ling Noise | | | p to Other Documents | | GOALS AND | POLICIES11 | | Land Use F | Planning and Design11 | | | tion Related Noise Sources | | Non-Trans | portation Related Noise Sources | | List of Figures | | | Figure N-1 | Sources of Sound | | Figure N-2 | Land Use Compatibility for Community Noise Exposure (Exterior) 7 | | Figure N-3a | Future Roadway Noise Contours | | Figure N-3b | Future Roadway Noise Contours | | Figure N-4 | Future Freeway and Railroad Noise Contours | | List of Tables | | | Table N-1: FF | IWA Design Noise Levels 5 | | | mmary of EPA/FRA Railroad Noise Standards6 | | | ate of California Interior and Exterior Noise Standards 9 | This page intentionally left blank ## INTRODUCTION he City of Anaheim is affected by several sources of noise, including vehicular traffic, entertainment facilities, sports events, commercial and industrial activity, and periodic occurrences such as construction and aircraft travel. Excessive levels of noise can affect the physical health, psychological stability, property values, and economic productivity of Anaheim and its residents. The control of noise, therefore, is an essential component in creating a safe, compatible, and productive environment. ## **ACHIEVING THE VISION** The citizens of Anaheim understand the relationship between noise and their health and serenity. As a part of the visioning process that shaped this general plan update, citizens and City officials identified goals for the future relating to balancing land uses in the City, in part to minimize incompatibilities and exposure to excessive noise while providing the range of uses needed to maintain a high quality of life. These goals are reflected in the Noise Element of this General Plan. ## **UNDERSTANDING NOISE** ## **Definitions** The following is a list of commonly used terms and abbreviations that may be found within this Element or when discussing the topic of noise. This is an abbreviated glossary that should be reviewed prior to reading the Element. Figure N-1, *Sources of Sound*, is presented following this glossary to illustrate the level of noise generated by common everyday occurrences. It is important to become familiar with these definitions in order to better understand information contained in the Noise Element. Ambient Noise – The composite of noise from all sources near and far. In this context, the ambient noise level constitutes the normal or existing level of environmental (background) noise at a given location. - Intrusive Noise That noise which intrudes over and above the existing ambient noise at a given location. The relative intrusiveness of a sound depends upon its amplitude, duration, frequency and time of occurrence, and tonal or informational content. - dB (Decibel) The unit of measure that denotes the ratio between two quantities that are proportional to power; the number of decibels corresponding to the ratio of the two amounts of power is based on a logarithmic scale. - dBA (A-weighted decibel) The A-weighted decibel scale discriminates against upper and lower frequencies in a manner approximating the sensitivity of the human ear. The scale ranges from zero for the average least perceptible sound to about 130 for the average pain level. - L₅₀ The A-weighted sound level that is exceeded 50% of the sample time. Alternatively, the A-weighted sound level that is exceeded 30 minutes in a 60-minute period (similarly, L₁₀, L₂₅, etc.). These values are typically used to demonstrate compliance with noise restrictions included in the City noise ordinance. - L_{eq} (Equivalent Energy Level) The average acoustic energy content of noise during the time it lasts. The L_{eq} of a time-varying noise and that of a steady noise are the same if they deliver the same acoustic energy to the ear during exposure, no matter what time of day they occur. - L_{dn} (Day-Night Average Level) The average equivalent A-weighted sound level during a 24-hour day, obtained after the addition of 10 decibels to sound levels in the night from 10:00 p.m. to 7:00 a.m. Note: CNEL and L_{dn} represent daily levels of noise exposure averaged on an annual or daily basis, while Leq represents the equivalent energy noise exposure for a shorter time period, typically one hour. CNEL and L_{dn} are the metrics used in this document to describe annoyance due to noise and to establish land use planning criteria for noise. - L_{max} (Maximum Energy Level) The maximum sound level (dB) observed during a particular noise event. More specifically, it is the greatest root-mean-square noise value obtained over the measurement period. - CNEL (Community Noise Equivalent Level) The average equivalent A-weighted sound level during a 24-hour day, obtained after the addition of five decibels to sound levels in the evening from 7:00 p.m. to 10:00 p.m. and after the addition of 10 decibels to sound levels in the night from 10:00 p.m. to 7:00 a.m. CNEL and L_{dn} are the metrics used in this document to describe annoyance due to noise and to establish land use planning criteria for noise. - Noise Contours Lines drawn around a noise source indicating equal levels of noise exposure. Vibration – Another community annoyance related to noise is vibration. As with noise, vibration can be described by both its amplitude and frequency. Amplitude may be characterized by displacement, velocity, and/or acceleration. Typically, particle velocity (measured in inches or millimeters per second) and/or acceleration (measured in gravities) are used to describe vibration. Vibration can be felt outdoors, but the perceived intensity of vibration impacts is much greater indoors, due to structural shaking. Some of the most common sources of vibration come from trains, transit vehicles, construction equipment, airplanes, and trucks. Several land uses are especially sensitive to vibration, and therefore have a lower vibration threshold. These uses include, but are not limited to, concert halls, hospitals, libraries, vibration-sensitive research or manufacturing operations, residential areas, schools, and offices. Figure N-1 Sources of Sound ## **RELATIONSHIP TO OTHER DOCUMENTS** The Noise Element is a comprehensive approach towards incorporating noise control in the planning process. It is a tool for achieving and maintaining environmental noise levels compatible with land use. The Noise Element identifies noise sensitive land uses and noise sources, and defines areas of noise impact. The Element establishes goals, policies, and programs to ensure that Anaheim residents will be protected from excessive noise. ## **Related General Plan Elements** The Noise Element is closely related to the Circulation and Land Use Elements. Transit thoroughfares such as freeways, arterial highways, and railways generate the majority of noise within the City and influence the type and intensity of development within a given area. Likewise, land uses sensitive to noise such as schools and residences are to be considered when determining land use patterns and planned mitigation measures related to noise impacts. The location and amount of such noise generators and receptors are also important considerations in the Public Services and Facilities and Green Elements. These elements address issues such as the development of educational facilities, public parks, and open space buffers. ## **Other Regulatory Documents** The intent of the Noise Element is to set goals to limit and reduce the effects of noise intrusion and to set acceptable noise levels for varying types of land uses. To this end, the City has the authority to set land use noise standards and place restrictions on private activities that generate excessive or intrusive noise. However, it should be recognized that the City does not have the authority to regulate all sources of noise within the City and various other agencies may supercede City authority. ## Federal Highway Administration State routes and freeways that run through the City are subject to Federal funding and, as such, are under the purview of the Federal Highway Administration (FHWA). The FHWA has developed noise standards that are typically used for Federally-funded roadway projects or projects that require either Federal or Caltrans review. These noise standards are based on Leq and L_{10} values and are included in Table N-1, *FHWA Design Noise Levels*. | TABLE N-1: FHWA DESIGN NOISE LEVELS | | | | | |-------------------------------------|---|----------------------------------|-----------------------|--| | Activity | | Design Noise Levels ¹ | | | | Category | Description of Activity Category | L_{eq} (dBA) | L ₁₀ (dBA) | | | А | Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose. Examples include natural parks or wildlife habitat. | 57
(exterior) | 60
(exterior) | | | В | Picnic areas, recreation areas, playgrounds, active sports areas, parks, residences, motels, hotels, schools, churches, libraries, and hospitals. | 67
(exterior) | 70
(exterior) | | | С | Developed lands, properties, or activities not included in Categories A or B, above. | 72
(exterior) | 75
(exterior) | | | D | Undeveloped lands. | | | | | E | Residences, motels, hotels, public meeting rooms, schools, churches, libraries, hospitals, and auditoriums. | 52
(interior) | 55
(interior) | | $^{^{\}rm 1}$ Either $\rm L_{\rm eq}$ or $\rm L_{\rm 10}$ (but not both) design noise levels may be used on a project. #### U.S. Department of Housing and Urban Development The Department of Housing and Urban Development (HUD) issues formal requirements related specifically to standards for exterior noise levels along with policies for approving HUD-supported or assisted housing projects in high noise areas. In general, these requirements established three zones. These include: - 65 dBA L_{dn} or less an acceptable zone where all projects could be approved, - Exceeding 65 dBA L_{dn} but not exceeding 75 dBA L_{dn} a normally unacceptable zone where mitigation measures would be required and each project would have to be individually evaluated for approval or denial. These measures must provide 5 dBA of attenuation above the attenuation provided by standard construction required in a 65 to 70 dBA L_{dn} area and 10 dBA of attenuation in a 70 to 75 dBA L_{dn} area, and - Exceeding 75 dBA L_{dn} an unacceptable zone in which projects would not, as a rule, be approved. #### **Federal Railroad Administration** The EPA is charged with the regulation of railroad noise under the Noise Control Act. The EPA Office of Noise Abatement and Control was closed in 1982, leaving the enforcement of EPA regulations to the Federal Railroad Administration (FRA). Table N-2, *Summary of EPA/FRA Railroad Noise Standards*, summarizes the EPA railroad noise standards that set operating noise standards for railroad equipment and set noise limit standards for new equipment. | TABLE N-2: SUMMARY OF EPA/FRA RAILROAD NOISE STANDARDS | | | | | |--|-------------------------|------------------------------|--------------------------------|-------------------| | Noise Sources | Operating
Conditions | Noise Metric ^{1, 2} | Measured
Distance
(feet) | Standard
(dBA) | | Non-Switcher | Stationary | L _{max} (Slow) | 100 | 73 | | Locomotives built on or | Idle Stationary | L _{max} (Slow) | 100 | 93 | | before 12/31/79 | Non-Idle Moving | L _{max} (Fast) | 100 | 95 | | Switcher Locomotives | Stationary | L _{max} (Slow) | 100 | 70 | | plus Non-Switcher Locomotives built after | Idle Stationary | L _{max} (Slow) | 100 | 87 | | 12/31/79 | Non-Idle Moving | L _{max} (Fast) | 100 | 90 | | | Speed ≤ 45 mph | L _{max} (Fast) | 100 | 88 | | Rail Cars | Speed > 45 mph | L _{max} (Fast) | 100 | 93 | | | Coupling | Adj. Avg. Max. | 50 | 92 | ¹ Slow and fast exponential-time-weighting is used. Source: United States Environmental Protection Agency Railroad Noise Emission Standard (40 Code of Federal Regulations Part 201). ## California Department of Health Services The California Department of Health Services (DHS) Office of Noise Control studied the correlation of noise levels and their effects on various land uses. As a result, the DHS established four categories for judging the severity of noise intrusion on specified land uses. Figure N-2, Land Use Compatibility for Community Noise Exposure (Exterior), presents a land use compatibility chart for community noise prepared by the California Office of Noise Control and adopted in this Noise Element to demonstrate land-use compatibility. While the chart is presented in terms of the L_{dn} or CNEL, the City prefers the use of the CNEL descriptor, as it is slightly more conservative (i.e., restrictive), in protecting sensitive land uses. ² Note that these values are in terms of the Lmax, and can be considerably greater than the Leq typically used in the measurement of obtrusive noise. Figure N-2 Land Use Compatibility for Community Noise Exposure (Exterior) It identifies "normally acceptable," "conditionally acceptable," "normally unacceptable," and "clearly unacceptable" exterior noise levels for various land uses. A "conditionally acceptable" designation implies new construction or development should be undertaken only after a detailed analysis of the noise reduction requirements for each land use is made and needed noise insulation features are incorporated in the design. By comparison, a "normally acceptable" designation indicates that standard construction can occur with no special noise reduction requirements. While this land use compatibility chart is based on a 24-hour value, the City is aware that some land uses are not occupied on a 24-hour basis, and a descriptor (such as L_{dn} or CNEL) may be overly restrictive in siting these types of sensitive land uses. Such uses may include, but are not limited to, schools, libraries, and churches. In these cases, a more appropriate standard would consider the time of occupancy of the land use. Here, the City recommends the use of a 65 dBA, 12-hour L_{eq} (L_{eq} (12)) that includes those hours of actual use. (If a facility is to be used in excess of 12 hours per day, the CNEL standard should be used.) Table N-3, State of California Interior and Exterior Noise Standards, includes the State interior and exterior noise standards for varying land uses. It is important to note that the exterior noise levels are to be attained in "habitable" exterior areas and need not encompass the entirety of a property and that special consideration should be given in the case of infill residential development located along the City's arterial corridors or railroad lines in order to achieve an appropriate balance between providing a quality living environment and attractive project design. TABLE N-3: STATE OF CALIFORNIA INTERIOR AND EXTERIOR NOISE STANDARDS | | Land Use | CNEL (dBA) | | |----------------|-----------------------------------------------------------------|-----------------------|-----------------------| | Categories | Uses | Interior ¹ | Exterior ² | | Residential | Single and multiple-family, duplex | 45 ³ | 65 | | | Mobile homes | | 65 ⁴ | | | Hotel, motel, transient housing | 45 | | | | Commercial retail, bank, restaurant | 55 | | | | Office building, research and development, professional offices | 50 | | | Commercial | Amphitheater, concert hall, auditorium, movie theater | 45 | | | | Gymnasium (Multipurpose) | 50 | | | | Sports Club | 55 | | | | Manufacturing, warehousing, wholesale, utilities | 65 | | | | Movie Theaters | 45 | | | Institutional/ | Hospital, school classrooms/playgrounds | 45 | 65 | | Public | Church, library | 45 | | | Open Space | Parks | | 65 | ¹ Indoor environment excluding: bathrooms, kitchens, toilets, closets, and corridors - Private yard of single-family dwellings - Multiple-family private patios or balconies accessed from within the dwelling (Balconies 6 feet deep or less are exempt) - · Mobile home parks - Park picnic areas - · School playgrounds - Hospital patios #### City of Anaheim Noise Ordinance The City of Anaheim has the authority to set land use noise standards and place restrictions on private activities that generate excessive or intrusive noise. The applicable standards for these activities are specified in the Anaheim Municipal Code. The Municipal Code limits sound levels for stationary sources of noise radiated for extended periods from any premises in excess of 60 decibels at the property line. Sound created by construction or building repair of any premises within the City is also exempt from the applications of the Municipal Code during the hours of 7:00 a.m. and 7:00 p.m. ² Outdoor environment limited to: ³ Noise level requirement with closed windows, mechanical ventilation or other means of natural ventilation shall be provided as per Chapter 12, Section 1205 of the Uniform Building Code. ⁴ Exterior noise levels should be such that interior noise levels will not exceed 45 dBA CNEL Traffic sounds, sound created by emergency activities and sound created by governmental units are exempt from the applications of the Municipal Code. To this end, for land use planning, the City's Noise Element has adopted the State of California standards as included in Table N-3, *State of California Interior and Exterior Noise Standards*. ## **GOALS AND POLICIES** his section contains a brief discussion and detailed policy direction for noise issues within Anaheim. The first issue, Land Use Planning and Design, concerns the relationship between the design and approval of land uses and existing or potential noise sources. The second issue, Transportation Related Noise Sources, considers impacts that can be created by the operation of motor vehicles, trucks, aircraft and railways in the City. Non-Transportation Related Noise Sources, the third issue, involves noise impacts created by business or residential activities, such as air conditioning units, manufacturing activities, barking dogs, or community events. By following the policies associated with each issue, Anaheim will ensure compatible development, protect noise sensitive land uses, and minimize the effects of excessive and nuisance noise. ## Land Use Planning and Design Although the City is largely built-out, the growth in population, employment and tourist activity may generate more traffic and attract additional noise producing uses. In addition, some undeveloped and underdeveloped areas are designated for land uses that may be noise-sensitive and are located in proximity to roadways, railroads and transit facilities. For example, in some areas of the City, mixed-use and higher density residential development is encouraged in close proximity to transportation facilities to improve transit accessibility and, in turn, improve traffic efficiencies. In addition, some of these same uses are located in areas that are transitioning from potential noise-generating industrial uses to other uses. As a result, land use compatibility with noise is an important consideration in the planning and design process. In order to identify potential mitigation to address noise abatement strategies, noise evaluations should be conducted when a proposed project places sensitive land uses and major noise generators within close proximity to each other. The City's Planning Department currently uses the project review process to identify potential noise issues and works with developers or landowners to apply site planning and other design strategies to reduce noise impacts. A developer, for example, could take advantage of the natural shape and contours of a site to arrange buildings and other uses in a manner that would reduce and possibly eliminate noise impacts. Examples of other site and architectural techniques could include: - Increasing the distance between noise source and receiver. - Placing non-noise sensitive land uses such as parking lots, maintenance facilities and utility areas between the noise source and receiver, while maintaining aesthetic considerations. - Using non-noise sensitive structures such as garages to shield noise-sensitive areas. - Orienting buildings to shield outdoor spaces from a noise source. - Locating bedrooms in residential developments on the side of the house facing away from major roads. ## **GOAL 1.1:** Protect sensitive land uses from excessive noise through diligent planning and regulation. #### Policies: - Update City regulations to adopt Land Use Compatibility for Community Noise Exposure and California Interior and Exterior Noise Standards as appropriate. - 2) Continue to enforce acceptable noise standards consistent with health and quality of life goals and employ effective techniques of noise abatement through such means as a noise ordinance, building codes, and subdivision and zoning regulations. - 3) Consider the compatibility of proposed land uses with the noise environment when preparing, revising or reviewing development proposals. - 4) Require mitigation where sensitive uses are to be placed along transportation routes to ensure that noise levels are minimized through appropriate means of mitigation thereby maintaining quality of life standards. - 5) Encourage proper site planning and architecture to reduce noise impacts. - 6) Discourage the siting of sensitive uses in areas in excess of 65 dBA CNEL without appropriate mitigation. - 7) Require that site-specific noise studies be conducted by a qualified acoustic consultant utilizing acceptable methodologies while reviewing the development of sensitive land uses or development that has the potential to impact sensitive land uses. ## **Transportation Related Noise Sources** Anaheim contains a number of transportation-related noise sources including freeways, arterial highways, collector roadways, helicopter, and railroad operations. These sources are the major contributors of noise in Anaheim. Cost effective strategies to reduce their influence on the community noise environment are an essential part of the Noise Element. While local government has little direct control of transportation noise at the source, as these levels are set by State and Federal agencies, the City does have some control over transportation noise that exceeds State and/or Federal standards through the enforcement of the Municipal Code. The most effective method the City has to mitigate transportation noise is by reducing the impact of the noise onto the community through noise barriers and site design review. The effect of a noise barrier is critically dependent on the distance between the noise source and the receiver. A noise barrier effect occurs when the barrier penetrates the "line of sight" between the source and receiver; the greater the penetration or height of the barrier, the greater the noise reduction. Additional attenuation can be achieved depending upon the source of transportation related noise. #### Roadways Roadways are one of the biggest sources of noise in the City. Everyday, thousands of vehicles travel through and around Anaheim. Sound emanates from the vehicles' engines and from the tires rolling over the pavement. One way the City can control vehicle noise is through speed reduction. A change of just 5 miles per hour can change the resultant noise by approximately one to two dBA. The difference in noise associated with a reduction of 10 miles per hour could be roughly equivalent to reducing the traffic volume by one-half. The City also has some control over traffic-generated noise through weight limitations and the designation of truck routes. Medium trucks, (i.e., those with a gross vehicle weight between 5 and 13.25 tons) produce as much acoustical energy as approximately 5 to 16 automobiles depending on the speed, with slower speeds demonstrating greater differential. Similarly, heavy trucks (i.e., those with a gross vehicle weight in excess of 13.25 tons) produce as much acoustical energy as 10 to 60 automobiles. The City can further reduce traffic-generated noise by ensuring that street paving is maintained and bumps and dips are minimized. Poor paving causes vehicles to bounce and this bouncing exacerbates the noise due to the rattling of the vehicle. This is especially important along those routes that realize augmented volumes of truck traffic. Noise contours for the City's roadways and freeways are presented in Figure N-3, *Future* Roadway Noise Contours, and Figure N-4, Future Freeway and Railroad Noise Contours. Future conditions consider sound levels given the buildout of land uses and the roadway network, but do not consider sound attenuation measures such as soundwalls. ### **Aircraft** The City is not located within the 65 dBA CNEL contours for any commercial or private airports, and fixed-wing aircraft are typically too high to add measurably to local noise. However, local helicopter air traffic is commonplace throughout the City. News and other helicopters (e.g., freeway traffic report helicopters) fly through the area, but do not land within the City. Helicopter use at hospitals is considered as an emergency activity and as such, is exempt under the City Municipal Code. Fire and police helicopter use for emergency functions also fall under this exclusion. Low-flying helicopter activity, however, has been a source of noise complaints within the City, particularly in the Anaheim Colony, and indicates that the siting of future heliports, regardless of their use, must be carefully reviewed for potential noise impacts. ## **Railways** Another prevalent source of noise in the City is from railroad operations. The City contains two train stations that are used by Metrolink and Amtrak for passenger rail service. Both Metrolink and Amtrak operate out of the Anaheim Station, which is located adjacent to the Angel Stadium of Anaheim. Metrolink also stops at the Anaheim Canyon Station, which is situated near the intersection of North Tustin Avenue and the Riverside (SR-91) Freeway. In addition, the City contains two railroad freight corridors. These include the Union Pacific line located primarily along the Santa Ana (I-5) Freeway, but diverging in the southern portions of the City, and the Burlington Northern & Santa Fe (BN&SF) line located along Orangethorpe Avenue/ Esperanza Road. Currently, daily train traffic produces noise that may disrupt activities in proximity to railroad tracks. For example, trains are required to sound their horns at all at-grade crossings. Trains may also be required to slow their speed through residential areas. These types of noise disturbances can interfere with activities conducted on noise-sensitive land uses. Railroad noise is dependant on a number of factors including the number of operations per day, the times these operations occur, the numbers of engines and railcars, the speed, the type of rail (i.e., continuous or bolted), and whether at-grade rail crossings exist that require engineers to sound a warning horn. Noise contours for railway operations are presented in Figure N-3, *Future Roadway Noise Contours*. This page intentionally left blank. This page intentionally left blank. This page intentionally left blank. #### **Alternative Transportation** The City can also minimize traffic-generated noise by encouraging the construction and use of alternative modes of transportation such as alternative fuel vehicles, the Bus Rapid Transit (BRT) System, or transit oriented design (TOD) — the provision of higher density, mixed-use development near major rail and transit stops. Alternative transportation modes can emit less noise per passenger than their automotive counterparts and can reduce traffic congestion. Additional information on TOD and the BRT System can be found in the Green and Circulation Elements. #### GOAL 2.1: Encourage the reduction of noise from transportation-related noise sources such as motor vehicles, aircraft operations, and railroad movements. #### Policies: - 1) Continue to enforce the noise standards of the State Motor Vehicle Code and other State and Federal legislation pertaining to motor vehicle noise. - 2) Employ noise mitigation practices, as necessary, when designing future streets and highways, and when improvements occur along existing road segments. Mitigation measures should emphasize the establishment of natural buffers or setbacks between the arterial roadways and adjoining noise-sensitive areas. - 3) Require that development generating increased traffic and subsequent increases in the ambient noise level adjacent to noise-sensitive land uses provide appropriate mitigation measures. - 4) Maintain roadways so that the paving is in good condition to reduce noise-generating cracks, bumps, and potholes. - 5) Require sound walls, berms and landscaping along existing and future freeways and railroad rights-of-way to beautify the landscape and reduce noise, where appropriate. - 6) Encourage the construction of noise barriers by the Public Utilities Commission, Southern California Regional Rail Authority, Union Pacific, Burlington Northern & Santa Fe and Amtrak where residences exist next to the track. - 7) Encourage the Public Utilities Commission, Southern California Regional Rail Authority, Union Pacific, Burlington Northern & Santa Fe and Amtrak to minimize the level of noise produced by train movements and whistle noise within the City by reducing the number of nighttime operations, improving - vehicle system technology and developing improved sound barriers where residences exist next to the track. - 8) Encourage the use sound-deadening matting (as opposed to wood) leading to, from and between the rails where public roads cross tracks in residential areas. - 9) Require private heliports/helistops to comply with the City noise ordinances and Federal Aviation Administration standards. - 10) Participate in the planning activities of County, regional and State agencies relative to the location of new airports and the assessment of their impact on the environment of the City. - 11) Encourage the development of alternative transportation modes that minimize noise within residential areas. - 12) Monitor proposals for future transit systems and require noise control to be considered in the selection of transportation systems that may affect the City. - 13) Continue efforts to minimize the impacts from police helicopter training and emergency response activities through the potential relocation of helicopter facilities and careful consideration of flight paths. ## **Non-Transportation Related Noise Sources** The City currently maintains a diversity of land uses, most of which generate their own noise. Industrial facilities generate noise through various processes that involve the use of heavy equipment and machinery. However, even commercial facilities and residential units can generate noise from the use of heating, ventilating, and air conditioning (HVAC) units. Restaurants, bars, and entertainment establishments may use sound amplification equipment that operates well into the night. Residential areas are also subject to noise from the use of pool and spa pumps, landscape maintenance equipment, barking dogs, etc. Mixed-use areas that place more sensitive residential uses alongside or above commercial uses can present their own challenges. Requiring that the commercial component meet a residential standard could make commercial operations difficult. Alternatively, applying a commercial standard to a mixed-use project could result in unacceptable noise levels at the residential portion of the structure/site. Still, mixed-use projects offer several advantages from both an air quality and transportation perspective, and should be encouraged. The most prominent non-transportation related noise production occurs at the three major attraction venues in the City: The Anaheim Resort®, Angel Stadium of Anaheim, and the Arrowhead Pond of Anaheim. These uses involve the use of delivery vehicles, rides and attractions, and attract thousands of people and automobiles that can create high levels of noise. Within the property lines of these uses, however, the noise levels are generally considered acceptable and appropriate to the use. Moreover, these uses employ large setbacks, parking buffers, and a variety of sound barriers to minimize noise impacts. The noise impacts on the area surrounding Angel Stadium of Anaheim is also limited due to the industrial nature of the surrounding development. However, as The Platinum Triangle transitions into a mixed-use center and incorporates more sensitive land uses, the potential for noise conflicts may rise. Any new development, therefore, will be required to incorporate appropriate sound mitigation measures to minimize the noise impacts from and to the surrounding environment. Another source of "non-transportation" noise comes from the operations of trucks and trains within the City. As previously mentioned, the operation of railroad trains and heavy trucks is preempted from local noise regulation while operating on public roads and dedicated rights-of-way. However, noise is also generated by operations (e.g., idling, loading, and unloading) that occur at facilities. Once on private property, these sources are no longer considered preempted and the City has authority to regulate this noise if it "spills" into adjacent areas. Finally, construction in all land use zones can temporarily elevate noise. The City recognizes that construction is a necessity and noise control for construction needs to be carefully balanced. Still, various measures are available to reduce this noise when necessary. ## GOAL 3.1: Protect residents from the effects of "spill over" or nuisance noise emanating from the City's activity centers. ### Policies: - Discourage new projects located in commercial or entertainment areas from exceeding stationary-source noise standards at the property line of proximate residential or commercial uses, as appropriate. - 2) Prohibit new industrial uses from exceeding commercial or residential stationary-source noise standards at the most proximate land uses, as appropriate. (Industrial noise may spill over to proximate industrial uses so long as the combined noise does not exceed the appropriate industrial standards.) - 3) Enforce standards to regulate noise from construction activities. Particular emphasis shall be placed on the restriction of the hours in which work other than emergency work may occur. Discourage construction on weekends or holidays except in the case of construction proximate to schools where these operations could disturb the classroom environment. - 4) Require that construction equipment operate with mufflers and intake silencers no less effective than originally equipped. - 5) Encourage the use of portable noise barriers for heavy equipment operations performed within 100 feet of existing residences or make applicant provide evidence as to why the use of such barriers is infeasible. (Res. 2005-19, February 15, 2005)